Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(11)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37298897

RESUMO

Growing consumer interest in healthy foods has led to an increased demand for bioactive compounds derived from eco-technologies. This review highlighted two emerging technologies, pressurized liquid extraction (PLE) and supercritical fluid extraction (SFE), which are based on clean processes aimed at recovering bioactive compounds from different food sources. We studied how the different processing conditions provide many advantages and a great opportunity to obtain compounds with antioxidant, antibacterial, antiviral, or antifungal activity from plant matrices and industrial biowaste, especially antioxidant compounds (anthocyanins and polyphenols) due to their important role in health promotion. Our research was conducted through a systematic search in different scientific databases related to the PLE and SFE topics. The review analyzed the optimal extraction conditions using these technologies, which lead to the efficient extraction of bioactive compounds, the use of different equipment, and recent combinations of SFE and PLE with other emerging technologies. This has given rise to the development of new technological innovations, new commercial applications, and the detailed recovery of various bioactive compounds extracted from different plant and marine life food matrices. These two environmentally friendly methodologies are fully valid and have great future application prospects in biowaste valorization. They represent a feasible technological tool that can promote the implementation of a circular economy model for the food industry. The underlying mechanisms of these techniques were discussed in detail and supported by current literature.


Assuntos
Cromatografia com Fluido Supercrítico , Eliminação de Resíduos , Antioxidantes/farmacologia , Alimentos , Antocianinas , Tecnologia , Cromatografia com Fluido Supercrítico/métodos
2.
Front Nutr ; 10: 1170392, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37125043

RESUMO

Two brown seaweeds (Saccharina japonica and Undaria pinnatifida) were characterized in terms of their nutritional and mineral composition, as well as their potential to modify the human gut microbiota. Nutritional analysis of these seaweeds showed that they comply with the criteria set out in European legislation to be labeled "low fat," "low sugar," and "high fiber." Mineral content analysis showed that 100 g of seaweed provided more than 100% of the daily Ca requirements, as well as 33-42% of Fe, 10-17% of Cu, and 14-17% of Zn requirements. An in vitro human digest simulator system was used to analyze the effect of each seaweed on the human colonic microbiota. The gut microbiota was characterized by 16S rRNA amplicon sequencing and short-chain fatty-acid analysis. Seaweed digestion and fermentation showed beneficial effects, such as a decrease in the phylum Firmicutes and an increase in the phyla Bacteroidetes and Actinobacteria. At the species level, seaweed fermentation increased the proportion of beneficial bacteria such as Parabacteroides distasonis and Bifidobacterium. Regarding of metabolic pathways, no significant differences were found between the two seaweeds, but there were significant differences concerning to the baseline. An increase in short-chain fatty-acid content was observed for both seaweeds with respect to the negative control, especially for acetic acid. Given of the obtained results, S. japonica and U. pinnatifida intake are promising and could open new opportunities for research and application in the fields of nutrition and human health.

3.
Antioxidants (Basel) ; 12(2)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36829882

RESUMO

A biorefinery process was developed for a freeze-dried pomace of calafate berries (Berberis microphylla). The process consisted of extraction of lipophilic components with supercritical CO2 (scCO2) and subsequent extraction of the residue with a pressurized mixture of ethanol/water (1:1 v/v). scCO2 extracted oil from the pomace, while pressurized liquid extraction generated a crude extract rich in phenols and a residue rich in fiber, proteins and minerals. Response surface analysis of scCO2 extraction suggested optimal conditions of 60 °C, 358.5 bar and 144.6 min to obtain a lipid extract yield of 11.15% (d.w.). The dark yellow oil extract contained a good ratio of ω6/ω3 fatty acids (1:1.2), provitamin E tocopherols (406.6 mg/kg), and a peroxide index of 8.6 meq O2/kg. Pressurized liquid extraction generated a polar extract with good phenolic content (33 mg gallic acid equivalents /g d.w.), anthocyanins (8 mg/g) and antioxidant capacity (2,2-diphenyl-1-picrylhydrazyl test = 25 µg/mL and antioxidant activity = 63 µM Te/g). The extraction kinetics of oil by scCO2 and phenolic compounds were optimally adjusted to the spline model (R2 = 0.989 and R2 = 0.999, respectively). The solid extracted residue presented a fiber content close to cereals (56.4% d.w.) and acceptable values of proteins (29.6% d.w.) and minerals (14.1% d.w.). These eco-friendly processes valorize calafate pomace as a source of ingredients for formulation of healthy foods, nutraceuticals and nutritional supplements.

4.
Foods ; 13(1)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38201064

RESUMO

The objective of this work was to carry out a preliminary study of the fractionation by supercritical CO2 (sc-CO2) extraction of two varieties of Peruvian beans (Phaseolus vulgaris L.), white (WB) and red (RB), to obtain two novel products: an oil rich in essential fatty acids and tocopherols and a defatted flour with high nutritional value and amino acids. The extraction temperature and pressure were optimized using the response surface methodology (RSM) and the extraction kinetics were optimized using the Spline equation. The results revealed that the best extraction conditions for WB and RB were 396.36 Bar, 40.46 °C, with an efficiency of 1.65%; and 391.995 Bar, 44.00 °C, with an efficiency of 1.12%, respectively. The WB and RB oils presented a high degree of polyunsaturation (63.2 and 52.8%, respectively), with oleic, linoleic, and linolenic fatty acids prevailing. Gamma-tocopherol was the predominant antioxidant in both oils. The residual flours (WB and RB) obtained after extraction with sc-CO2 had a high average content of proteins (23%), carbohydrates (61%), and minerals (3%). The limiting amino acids of WB were: Fen + Tyr, Leu, Lys, and in RB, only Leu was limiting. The viscosity of the solutions (20%) of the WB and RB flours mainly adjusted to the Waele's Ostwald model (r = 0.988). It is concluded that both products (oil and bean flour) obtained in an optimized manner using an eco-friendly technology with sc-CO2 have high nutrient and bioactive component content and can be used in the development of new ingredients and healthy foods of plant origin.

5.
Food Microbiol ; 107: 104058, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35953169

RESUMO

Efforts have been focusing on the way to overcome the impact of heating on food quality while achieving the desired shelf life. In this sense, the thermosensitization of E. coli using the natural antimicrobials vanillin (V; 0.8 and 1.0 g/L) or/and emulsified citral (C; 0.012 and 0.025 g/L) was assessed at 58 and 60 °C in blended carrot-orange juice (pH 4.0; 9.0°Brix). All combined treatments exceeded the inactivation achieved by the single thermal treatments in half the time. The inactivation of the binary treatments (V or C + heating) at 58 °C was 3.84-0.62 log-cycles more effective than the control, particularly with vanillin. Ternary treatments (V + C + heating) at 58 °C increased the microbial reduction approximately 30%; however, at 60 °C no further inactivation was observed, suggesting the thermal effect prevailed. This was verified by the higher b Weibullian parameter and the narrower frequency distributions. The selected treatments 1.0 V + 0.012C at 58 and 60 °C were challenged against the pathogenic E. coli O157:H7 and found to be effective. Additionally, the microbiota of the juice was maintained at acceptable levels during storage (4 °C). In conclusion, there was an increase in the heat sensitivity of E. coli due to the natural antimicrobials, particularly vanillin at 58 °C. Therefore, reducing the intensity of the thermal processing will lead to clean label, high-quality juices, while addressing food safety requirements.


Assuntos
Citrus sinensis , Daucus carota , Escherichia coli O157 , Monoterpenos Acíclicos , Benzaldeídos , Bebidas , Contagem de Colônia Microbiana , Daucus carota/química , Escherichia coli O157/fisiologia , Microbiologia de Alimentos , Temperatura Alta
6.
Front Nutr ; 9: 810827, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35369077

RESUMO

The purpose of this study was to apply different pulsed electric field (PEF) conditions as a pretreatment to the freeze-drying (FD) process of Chilean abalone and to assess its effects on protein quality, microstructure, and digestibility of the freeze-dried product. The treatments PEF (0.5, 1.0, and 2.0 kV cm-1) and cooking (CO) were applied at 100°C × 15 min. Then, their performances were subjected to a FD process. PEF + CO pretreated freeze-dried samples showed shorter process times than freeze-dried control samples without PEF + CO, where the treatment PEF at 2.0 kV cm-1 reached the shortest time. In addition, the abovementioned samples presented the best textural parameters but a low protein content. The thermal properties indicate a total denaturation of the proteins, where the amide I region presented greater mobility in the sample pretreated with an electric field of 2.0 kV cm-1. The assay for digestibility shows better hydrolysis for the 2.0 kV cm-1 PEF sample and has a higher Computer-Protein Efficiency Ratio (C-PER). Thereby, variations in thermal behavior and physicochemical parameters in comparison to combined PEF + CO pretreatments were observed. In addition, high protein quality and digestibility of pretreated freeze-dried Chilean abalones were maintained to the desired properties (texture and C-PER) and conditions (FD time).

7.
Int J Food Sci ; 2021: 7105170, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34568484

RESUMO

With the continuous increase in research on lipids, technologies and the development of chemical-analytical methods associated with the characterization and monitoring of different processes that involve modifications in edible fats are increasing. The beneficial effect of lipids, especially those essential for the health of the population, is widely known. However, degradation compounds are also produced that eventually have negative effects. In this dual context, the monitoring of the changes suffered by nutritional compounds can be obtained thanks to the development of technologies and analytical methods applied to the study of lipids. The modifications that lipids undergo can be followed by a wide variety of methods, ranging from the basic ones associated with simple chemical titrations to the more complex ones associated with sophisticated laboratory equipment. These determinations involve chemical and/or physical quantification of lipids to know an initial condition on the major and minor components. In addition to technologies that allow monitoring during more complex processes such as thermal deterioration, in multiple conditions depending on the objective of the study, this review could benefit a comprehensive understanding of lipid deterioration for future developments and research in the study of fats and oils for human consumption.

8.
Antioxidants (Basel) ; 10(7)2021 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-34356341

RESUMO

Salmon paste contains nutritious components such as essential fatty acids (EPA, DHA), vitamin E and astaxanthin, which can be protected with the addition of red algae extracts. Phenolic extracts were prepared with an ethanol: water mixture (1:1) from the red seaweeds Gracilaria chilensis, Gelidium chilense, Iridaea larga, Gigartina chamissoi, Gigartina skottsbergii and Gigartina radula, obtained from the Pacific Ocean. Most algae had a high content of protein (>7.2%), fiber (>55%) and ß-glucans (>4.9%), all expressed on a dry weight basis. Total polyphenols (TP), total flavonoids (TF), antioxidant (DPPH, FRAP) and antibacterial power of the extracts were measured. In addition, the nutritional components of the algae were determined. Results showed that the content of TP in the six algae varied between 2.6 and 11.3 mg EAG/g dw and between 2.2 and 9.6 for TF. Also, the extracts of G. skottsbergii, G. chamissoi, G. radula and G. chilensis showed the highest antiradical activity (DPPH, FRAP). All samples exhibited a low production of primary oxidation products, and protection of the essential components and the endogenous antioxidants tocopherols and astaxanthin, particularly in the case of G. skottsbergii, G. chamissoi, G. radula and G. chilensis. Furthermore, all algae had inhibitory activity against the tested microorganisms, coincident with their antioxidant capacity. Results show that the extracts may have future applications in the development and preservation of essential dietary components of healthy foods.

9.
Antioxidants (Basel) ; 10(5)2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33923315

RESUMO

Avocado oil is considered a highly prized food due to its nutritional contribution. On the other hand, Aristotelia chilensis (Molina) Stuntz (Elaeocarpaceae), common name "maqui", is an endemic fruit in Chile, well known for its exceptional antioxidant properties. In general, maqui by-products such as leaves are considered as waste. Thus, maqui leaves extracts were used to improve the stability of vegetable oils, particularly avocado oil. Hence, avocado oil was fortified with two extracts (ethyl ether and methanol) obtained of maqui leaves and exposed to 120 °C for 386 h in an oven. The results showed a high content of monounsaturated fatty acids (69.46%, mainly oleic acid), followed by polyunsaturated fatty acids (16.41%, mainly linoleic acid) and finally saturated fatty acids (14.13%). The concentration of the total phenolic compounds in the pure oil, ethyl ether and methanol maqui leaves extracts were 45.8, 83.7, and 4100.9 ppm, respectively. In addition, the antioxidant activity was 5091.6 and 19,452.5 µmol Trolox eq/g for the ethyl ether and methanol extracts, respectively. The secondary degradation compounds showed significant differences between the fortified and non-fortified samples after 144 h and the TG/DTG analysis showed a significant increment of 7 °C in the degradation temperature (Tonset) of avocado oil fortified with the methanol extract when compared to the non-fortified oil and fortified oil with ethyl ether extract. After heating for 336 h, fortified oil with methanol extract reached the limit percentages of polar compounds, while pure oil reached it in a shorter time, i.e., 240 h. Based on the results, avocado oil can be protected with natural additives such as extracts obtained from maqui leaves, leading to an increase in its thermo-oxidative stability.

10.
Molecules ; 24(11)2019 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-31185591

RESUMO

Avocado oil has generated growing interest among consumers due to its nutritional and technological characteristics, which is evidenced by an increase in the number of scientific articles that have been published on it. The purpose of the present research was to discuss the extraction methods, chemical composition, and various applications of avocado oil in the food and medicine industries. Our research was carried out through a systematic search in scientific databases. Even though there are no international regulations concerning the quality of avocado oil, some authors refer to the parameters used for olive oil, as stated by the Codex Alimentarius or the International Olive Oil Council. They indicate that the quality of avocado oil will depend on the quality and maturity of the fruit and the extraction technique in relation to temperature, solvents, and conservation. While the avocado fruit has been widely studied, there is a lack of knowledge about avocado oil and the potential health effects of consuming it. On the basis of the available data, avocado oil has established itself as an oil that has a very good nutritional value at low and high temperatures, with multiple technological applications that can be exploited for the benefit of its producers.


Assuntos
Persea/química , Óleos de Plantas/farmacologia , Antioxidantes/farmacologia , Biotecnologia , Contaminação de Alimentos , Humanos , Óleos de Plantas/isolamento & purificação
11.
Molecules ; 24(9)2019 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-31027319

RESUMO

This research focused on obtaining eicosapentaenoic acid (EPA, 20:5 n-3) and docosahexaenoic acid (DHA, 22:6 n-3) (EPA+DHA) concentrates from refined commercial salmon oil (RCSO). Independent variables of the complexation process were optimized by means of the application of response surface methodology (RSM) in order to obtain the maximum content of such fatty acids (FAs). As a result of employing the optimized conditions for all the variables (6.0, urea:FA content ratio; -18.0 °C, crystallization temperature; 14.80 h, crystallization time; 500 rpm, stirring speed), high contents of EPA and DHA could be obtained from RCSO, achieving increases of 4.1 and 7.9 times in the concentrate, with values of 31.20 and 49.31 g/100 g total FA, respectively. Furthermore, a 5.8-time increase was observed for the EPA + DHA content, which increased from 13.78 to 80.51 g/100 g total FA. It is concluded that RCSO can be transformed into a profitable source of EPA and DHA (EPA+DHA), thus leading to a product with higher commercial value.


Assuntos
Ácidos Docosa-Hexaenoicos/análise , Ácido Eicosapentaenoico/análise , Ácidos Graxos/química , Óleos de Peixe/análise , Óleos de Peixe/química , Ureia/química , Valor Nutritivo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...